
会员
量化研究体系:以7大模块为核心
计算机网络计算机理论、基础知识9.7万字
更新时间:2022-05-10 18:42:48 最新章节:7.2.2 VNPY交易接口的使用
书籍简介
本书以为广大量化研究者建立一个一般性的量化研究流程(主要是量化策略开发,但也包括其他量化研究)为主旨来展开撰写的。全部的章节分布以流程化的形式展开,从量化研究的数据开始到最终以交易结束。数据库、指标库、算法库、工具库、可视化库、日常工作系统、交易系统这7个核心库分别解决了量化研究中某一个环节的问题。量化研究是以上述7个库存表征的环节的一个周而复始的工作。它将数据和思想相结合然后通过交易来检验研究成果是否达到预期,然后再改进思想和更换数据,并投入到下一次交易中。这样的循环使得量化研究每一次都更加接近理想效果。而在循环的每一个环节上,本书给出了一系列的工具、算法、技术等来支撑各个库的功能。本书在编程语言上以matlab和python为主,数据库一章用到了一些mysql的基本知识,交易接口一章用到了一些mongodb的知识。可以说本书的内容是十分丰富的,通过阅读本书读者可以对量化研究形成一个系统、全面、完整的认识,并且在今后的研究工作中逐步拓展最终形成自己的体系。
上架时间:2021-11-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
李一邨
最新上架
- 会员文心一言是百度推出的一款基于大语言模型的生成式AI产品,《文心一言从新手到高手(写作+绘画+教育+编程+助手)》详细介绍了其在不同领域的应用方法,是一本全面、详尽的文心一言使用指南。《文心一言从新手到高手(写作+绘画+教育+编程+助手)》共8章,依次讲解了文心一言的基础知识、创意写作、零基础绘画、数据分析、营销文案写作、职场百宝箱、求职招聘、教育教学、学生学习、编程辅助、生活顾问、插件、文心一言A计算机12.2万字
- 会员本书内容是在充分利用偏最小二乘原理优势的基础上,重点研究改进与优化偏最小二乘的不足方面,使其更好地适应中医药数据分析。主要内容包括分别引入非径向数据包络分析和降噪稀疏自编码器优化偏最小二乘的噪声处理,使其处理缺失值和噪声更有效;分别引入特征相关、L1正则项和灰色关联优化偏最小二乘的特征提取,实现有效降维和提取特征子集;分别融合受限玻尔兹曼机、稀疏自编码器、深度置信网络提取非线性成分,优化偏最小二乘计算机10.5万字
- 会员本书以SPSS28.0中文版为平台,以实用为原则,由浅入深,全面系统地介绍SPSS的基本功能和实际应用方法。本书涉及面广,从SPSS基本操作开始介绍,覆盖大部分常用功能和高级统计分析方法。本书共11章,内容包括SPSS基础知识、建立与整理数据、SPSS基本统计分析、假设检验、非参数检验、方差分析、相关分析、回归分析、聚类和判别分析、统计图形和SPSS数据分析综合应用。在介绍的过程中,图文并茂地对计算机10.2万字
- 会员本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字
- 会员本书深入剖析了互联网主导下的数字广告系统,详细阐述了如何通过数据驱动的产品技术、计算算法和动态定价模型来推进广告主的数字营销,并使其在广告领域与技术广告体系全面融合。同时,本书还探讨了数字化升级对广告业流程的影响,包括市场研究、内容匹配、定制化广告、广告竞投以及消费者沉浸式互动和用户忠诚度提升等营销职能。这些内容共同构建了数字化和智能化广告发展的综合知识体系。全书分为三篇(共10章):第一篇为基础计算机30.5万字
- 会员在物联网及大数据被广泛应用的时代背景下,计算机网络在人们的日常生产生活中的应用比重越来越大,并潜移默化地改变着人们的生产生活方式。在计算机网络中,应用最广泛的是局域网。本书对局域网的组建、管理与维护进行全面剖析,向读者揭开局域网的神秘面纱,在熟悉局域网知识要点的同时,重点培养读者的动手能力和专业思维能力。全书共9章,内容包括局域网概述、局域网基础技术、局域网网络设备、无线局域网的组建、局域网规划与计算机10.8万字
- 会员深度强化学习是人工智能和机器学习的重要分支领域,有着广泛应用,如AlphaGo和ChatGPT。本书作为该领域的入门教材,在内容上尽可能覆盖深度强化学习的基础知识和经典算法。全书共10章,大致分为4部分:第1部分(第1~2章)介绍深度强化学习背景(智能决策、人工智能和机器学习);第2部分(第3~4章)介绍深度强化学习基础知识(深度学习和强化学习);第3部分(第5~9章)介绍深度强化学习经典算法(D计算机16.9万字