- 自动控制理论与应用实验指导
- 戴亚平编著
- 962字
- 2025-02-27 22:58:12
2.2 单自由度机械臂系统的数学建模实验
2.2 Mathematical Modeling Demonstration Experiments of POFR-Arm
2.2.1 直流电动机的参数辨识实验
2.2.1 DC Motor Parameter Identification Experiment
电动机为典型的二阶系统,方框图及传递函数如图2.5所示。
The motor is a typical second-order system,and the transfer function block diagram is shown in Figure 2.5.
开环传递函数:

Open loop transfer function:

式中,T,K为电动机参数。
Where T,K are DC motor parameters.
闭环传递函数:

Close loop transfer function:

在式(2.17)中,,ξ=
。
In(2.17),,ξ=
.
可以将式(2.17)写为式(2.18)的形式:

Formula(2.17)can be written to(2.18):

其中

Where

当输入为单位阶跃函数时,对系统取拉普拉斯逆变换有:

When the input is a step function,the inverse Laplace transform of the system is:

对式(2.21)两边取以10为底的对数,有:

On both sides of the formula(2.21),put 10 as the base of the logarithm,there is,

当t→∞时,令θ(t)=log(1-y(t)),式(2.22)可以化简为:

When t→∞,Let θ(t)=log(1-y(t))Formula(2.20)can be simplified as:

其中:

Where

对于式(2.21),以及根据实验获得的表2.1所示的阶跃响应数据,采用最小二乘法辨识参数 a和 b [见本章附录],可以得到:
a=-3.9896
b=6.5241
According to formula(2.21),and experimental data of step response shown in table 2.1,using the least squares method to identify the parameters A and B [see Appendix at the end of this chapter]. we can obtain:
a=-3.9896
b=6.5241
由此可得:

Thus:

因此可以得到电动机的参数为 T=0.054,K=4.587。
So we obtain the parameter of motor:T=0.054,K=4.587
于是得到系统的开环传递函数为:

So,the open loop system transfer function is:

或者写为:

Also,the(2.24)will be written as following:

Table 2.1 Step Response Value of DC Motor System
表2.1 电机系统阶跃响应实验值

2.2.2 电动机的阶跃响应实验
2.2.2 Experiment on Motor StepResponse
(1)实验目的
(1)The purpose of Experiment
1)通过调节参数 ξ(阻尼比),ωn(无阻尼自然频率),可以看出二阶系统的动态性能变化。
1)When the parameters ξ(damping ratio)and ωn(damping natural frequency)are adjusted,the dynamic performance of the second order system will be difference.
2)让学生掌握二阶系统动态性能的测试方法。
2)Let students master the test method about the second order system dynamic performance
(2)实验设备
(2)The equipment of plant and controller
硬件设备:单自由度便携式机械臂,计算机。
Hard ware:POFM-Arm,and PC.
软件环境:C++,或者MATLAB;
Software:C++,or MATLAB
(3)实验内容
(3)Content of Experiment
计算电机模型二阶系统的ωn,ξ。首先给定单位阶跃信号,改变二阶系统的阻尼比ξ,观察并记录输出的响应曲线填写到表2.2,然后测量并记录超调量P. O.%,峰值时间t p和调节时间t s,稳态误差 ess(t)等性能指标值,填写到表2.3。
Calculate the parameters of second order motor ωn,ξ. Give out the step input,and adjust the damping ratio ξ,observe and record the response curve,fill the curve into the table 2.2. And then,test and record the percent overshoot P. O.%,peak value time tp,Settling time ts,steady state error ess(t),fill them into table 2.3.
Table 2.2 The Experiment Response Curve of Adjust Damping Ratio ξ
表2.2 阻尼比调整的实验响应曲线

Table 2.3 The Performance Index of Second Order System
表2.3 二阶系统的性能指标
